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Abstract. This paper is concerned with the development of an algorithm to solve continuous 
polynomial programming problems for which the objective function and the constraints are specified 
polynomials. A linear programming relaxation is derived for the problem based on a Reformulation 
Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be 
included in the original problem, and subsequently linearizes the resulting problem by defining new 
variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in 
the context of a proposed branch and bound scheme, which is proven to converge to a global optimal 
solution. A numerical example is presented to illustrate the proposed algorithm. 
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1. Introduction 

In this paper, we address a polynomial programming problem which seeks a global 
minimum to a polynomial objective function subject to a set of polynomial 
constraint functions, all defined in terms of some continuous decision variables. 
We do not put any other convexity or generalized convexity restrictions on these 
functions, but we do assume that the feasible region is compact. A mathematical 
formulation of this problem is given below. 

PP(!Cl) : Minimize{+,(x): x E Z fl a} , 

where Z={x: +,(x)2& for r=l,.. .,R1, $?(x)=p, for r=R,+l,... ,R}, 
andR={x:OaZj~xj~uj<m, forj-l,...,n}, andwhere 

c#&)~~~ arf[n xj] forr=O,l,...,R. (1) 
I iEJ,, 

Here, T, is an index set for the terms defining 4,(a), and (Y,~ are real coefficients 
for the polynomial terms (IIIiEJ,, x,), t E T,, r = 0, 1, . . . , R. Note that we permit 
a repetition of indices within each set J,,. For example, if J,( = { 1,2,2,3}, then 
the corresponding polynomial term is x,x:x,. In particular, let us denote N = 
(1,. . . , n}, and let 6 be the maximum degree of any polynomial term appearing 
in PP(CL). Define & = {N, . . . , N} to be composed of 6 replicates of N. Then, 
eachJ,,CN, with 16\J,,I~6, for tET,, t-=0,1,. . . , R. 
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In its general form as formulated above, polynomial programs have not 
received much attention. Notable exceptions are the recent papers by Floudas and 
Visweswaran (1991) and Shor (1990). The first of these papers suggests a 
successive quadratic variable substitution strategy to transform a given polynomial 
problem to one of minimizing a bilinear function subject to bilinear constraints. 
Following this, a generalized Benders type of approach is employed, where the 
Benders cuts are replaced by suitable implied linearized Lagrange functions. A 
branch and bound algorithm is developed to obtain an &-optimal solution. The 
second paper adopts similar successive quadratic transformations to write the 
problem as an equivalent quadratically constrained quadratic problem. In some 
problem instances, products of linear constraints, if present, are selectively used 
to generate additional implied quadratic constraints. However, rather than solve 
such problems in general, the focus here is to develop sufficient conditions under 
which the Lagrangian dual of the resulting equivalent quadratic problem would 
preclude the presence of a duality gap. 

In contrast, a substantial amount of literature exists on some special cases of 
Problem PP(ln), such as concave minimization problems and bilinear program- 
ming problems (see Pardalos and Rosen (1987) for a recent survey). Another 
related problem to PP(in) is the O-l polynomial program, where the x-variables 
are restricted to be binary valued. Various linearization, algebraic, enumerative, 
and cutting plane methods have been developed for nonlinear O-l programs, as 
recently surveyed by Hansen, Jaumard, and Mathon (1989). In particular, for 
constrained polynomial O-l programming problems, the linearization-cutting 
plane method proposed by Balas and Mazzola (1984a, b) appears to perform 
quite favorably (see Hansen et al., 1989). However, this approach exploits the O-l 
structure of the problem, and is therefore not directly applicable for continuous 
polynomial programming problems. 

Problem PP(fi) belongs to the general class of constrained global optimization 
problems, for which Horst (1990), and Horst and Tuy (1990) prescribe a variety 
of promising methods. These methods include branch and bound, outer approxi- 
mation, and combinations of branch and bound and outer approximation tech- 
niques. In an earlier paper, Horst (1986) also presents a prototype branch and 
bound algorithm to solve constrained global optimization problems, and gives 
various sufficient conditions for convergence. 

To solve PP(Ln), we propose a branch and bound algorithm which utilizes 
specially constructed linear bounding problems using a Reformulation Lineariza- 
tion Technique (RLT). In this approach, we generate nonlinear implied con- 
straints by taking the products of bounding terms in fi up to a suitable order, and 
also possibly products of other defining constraints of the problem. The resulting 
problem is subsequently linearized by defining new variables, one for each 
nonlinear term appearing in the problem. The straightforward mechanics of RLT 
automatically creates outer linearizations that approximate the closure of the 
convex hull of the feasible region. In the case of polynomial O-l integer programs 
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and polynomial O-l mixed integer programs which are linear in the continuous 
variables when the O-l variables are fixed in values, Sherali and,Adams (1989, 
1990) obtain a hierarchy of such approximations leading to the exact convex hull 
representation of the feasible region, by using suitable applications of such an 
RLT procedure. For the jointly constrained biconvex programming problem, 
which is a special case of PP(fi), Al-Khayyal and Falk (1983)) and Al-Khayyal 
(1990) constructed linear bounding problems with the motivation to approximate 
the convex envelopes of the biconvex functions appearing in the constraints and in 
the objective function. By selecting proper products of lower/upper bounding 
constraints, their linear programming representation can equivalently be obtained 
via a restricted application of RLT. Sherali and Alameddine (1990) applied an 
extended version of RLT to derive stronger bounds in a branch and bound 
algorithm to solve bilinear programming problems. They also showed that for 
some special cases of jointly constrained bivariate bilinear programs, RLT yields 
the exact convex hull representation. In this paper, we generalize their branch 
and bound algorithm for solving continuous polynomial programs. A similar 
partitioning strategy is employed, involving the splitting of the set R into smaller 
hyperrectangles at each stage of the algorithm. However, the main point of 
difference lies in the construction of an appropriate RLT procedure used in 
concert with a suitable partitioning of the hyperrectangle in order to ensure the 
convergence of the algorithm. 

The remainder of this paper is organized as follows. In the next section, we 
construct the RLT based linear bounding problem. Section 3 imbeds this problem 
in a branch and bound algorithm, and prescribes a partitioning strategy that 
guarantees the convergence of the overall algorithm. A third order polynomial 
problem is solved to illustrate the procedure in Section 4, and the final section 
discusses further ongoing research and implementation issues. 

2. An RLT Based Linear Bounding Problem 

Given 0, in order to construct the linear programming bounding problem LP(R) 
using RLT, we begin by generating implied constraints using distinct products of 
bounding factors (xi - lj) 2 0, (u, - xi) 2 0, j E N, taken 6 at a time. These 
constraints are of the form 

where (I1 U J,) 5 i?, 11, U J21 = 6. The number of distinct constraints of type (2) 
is given by 

n+/C-1 
i ( k 
k=O 

)(n+;;I;;-l). 

After including the constraints (2) in the problem PP(fi), let us substitute 



104 HANIF D. SHERALI AND CIHAN H. TUNCBILEK 

where the indices in J are assumed to be sequenced in nondecreasing order, and 
where Xii1 = x,Vj E N, and X, = 1. The number of X-variables defined here, 
besides XCjj , j E N,, and X, is ( n i”) - (n + 1). Note that each distinct set J 
produces one distinct X, variable, and that when we write XCi,j,k) or XCJ,UJ,) for 
example, we assume that the indices within (.) are sequenced in nondecreasing 
order. 

REMARK 1. Tighter Linear Programming Representations. Evidently, the con- 
straints of type (2) are implied by the set Cl prior to the linearization. However, 
following the linearization process, these constraints impose useful interrelation- 
ships among the product variables X,. In a likewise manner, we can also generate 
additional implied constraints in the form of polynomials of degree less than or 
equal to 6, by taking suitable products of constraint factors 4,(x) - p, b 0, 
r = 1, . . . , R, and/or products of bounding factors with constraint factors wher- 
ever possible. In addition, we can multiply the equality constraints 4,(x) = /?, , 
r=R1+l,..., R, defining 2, by sets of products of variables of the type 
Ilj,,, xi, J, c N, so long as the resulting polynomial expression is of degree no 
more than 6. Incorporating these additional constraints in LP(fl) after making the 
substitutions (3), produces a tighter linear programming representation. Although 
this is theoretically admissible and may be computationally advantageous, it is not 
necessarily required for the results presented in this paper. Nevertheless, we 
permit the inclusion of such constraints within LP(LR) as a user or application 
driven option. 

Lemma 1 below verifies that LP(sZ) is indeed a relaxation of PP(Q), and gives an 
important characterization of LP((n). Henceforth, we will let v[*] denote the value 
at optimality of the corresponding problem [*I. 

LEMMA 1. v[LP(O)] G y[PP(fl)]. M oreover, if the optimal solution (x*, X*) 
obtained for LP(0) satisfies (3) for all J E U ,“=, U fET,{Jrt}, then x” solves 
Problem PP(fi). 

Proof. For any feasible solution X to PP(Cl), there exists a feasible solution 
(X, X) to LP(R) with th e same objective function value which is constructed using 
the definition (3). Hence, v[LP(LR)] s v[PP(fi)]. Moreover, if (3) holds for an 
optimal solution (CC*, X*) to LP(fi), for all JE U rZO U ftT,{Jrl}, then x* is 
feasible to PP(O), and v[LP(LR)] = C,,, CY~~X:~, = C,,,O (Y,,~[I~~~~~~ n;], which 
equals the objective value of PP(0) at x = x”. Hence, x” solves PP(R). 0 

Notice that LP(LR) does not explicitly contain any constraint that can be generated 
by constructing products of bounding factors taken less than 6 at a time. The next 
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Lemma shows that such constraints are actually implied by those already existing 
in LP(Q). 

LEMMA 2. Let [f(e)], denote the linearized version of a polynomial function f(-) 
after making the substitutions (3). Then, the constraints [F,,(J,, J,)], a 0, where 
(J1 u J,) c N, IJ1 u J*) = S’, 1 =Z S ’ < 6, are all implied by the constraints 

MJI 7 JA 3 0 generated via (2), f or all distinct ordered pairs (J1 U J2) c #, 
IJ, u J,l = 6. 

Proof. For any 6 ‘, 16 6 ’ < 6, consider the surrogate of the constraints 
[F,,+,(J, U {t>, J2)ll 20 and [F,.+,(J,, J, U {t>>ll 2% where (J1 U 4) C N, IJ, U 
J2)=6’, and tEN. 

= tx,FadJ, a JZ)l! - h[F*,(J, 1 Jdl! + dF64JI > Jdl, - Lv.,4fI > Jdl, = (u, - k)[~,,(J,~ Jdl, 20 
Since (uf - Z,)aO, it follows that [F,,(J,, J,)],*O is implied by [F,,+,(J, U 
{t}, J,)], 2 0 and [F,,+,(J, , J, U {t})], 2 0. The required result follows by the 
principle of induction, and this completes the proof. 0 

The next result establishes an important interrelationship between the newly 
defined variables X, , and prompts a partitioning strategy which drives the 
convergence argument. 

LEMMA 3. Let (X, 2) be a feasible solution to LP(R). Suppose that ,?p = 1, . 
Then 

- 
xc,,,,=l&VJcN, 1+1G6-1. (4) 

Similarly, if X, = u, , then 

GUP) =u,X,VJ~N, 1+(%+-l. (5) 

Proof. First, consider the case X, = Z, . For IJ~= 1, consider any q E N (pos- 
sibly, q = p). By Lemma 2, the following constraints are implied by [(2)], , where 
as before, [.I[ denotes the linearization of [.I under the substitution (3). 

Hence, we get 

WP - 1,) + zpxq c x(p,4) =z $x4 + uq(xp - I,) . (7) 

By evaluating (7) at (X, X), we have XCp,yj = lpX4. 
Now, let us inductively assume that (4) is true for IJI = 1, . . . , (t - l), and 

consider IJI = t, where 2 St<S-l.ForanyqEJ(possiblyq-p),byLemma2, 
the following constraints are implied by [(2)],. 
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[(xpAlp)(xq-'q) fl (X,-'j)],Lo 
jEJ-q 

[(~p-zp)(uqpxq) I2 (I-,-1,)] >O. 
jEJ-q 1 

(8) 

Let us write lljIjEJeq(xj - 1,) = Il,,,-, , x. + f(x), where f(x) is a polynomial in x of 
degree no more than t - 2. Then, from (8), we have 

(%JP) - QJJ> 2 lqw(J+p-q) - p$bq)) + Ppx,f(x) - xpx,f(41, 
+ 1, lx, f(x) - 1, f(x)ll 

(XV UP) - l,X,) s uq (x(J+p-q) - $X(,-q,) + [~pxqf(x) - x,-qb)l, (9) 

+ u,[x,.w - qG91, . 

Let (*)lCi.xj denote the function (.) being evaluated at (i, 2). By the induction 
hypothesis, &+p-qj = I&q,, b+JWl~l~x,~~ = ~pbqf(4111~x.~.)~ and 
[x,f(x)l,~(x.x~ = $M41&,,,. H ence, when we evaluate (9) at (X, x), the right 
hand sides of both the inequalities become zero, and this gives XC,+) = Z,gJ. 

The case for X, = up can be similarly proven by using 

[(%4(~,-x,, rI (nj-Lj)][zO 
jtJ-q 

in place of (S), and this completes the proof. 

(10) 

q 

3. A Branch and Bound Algorithm 

We are now ready to inbed LP(R) in a branch and bound algorithm to solve 
PP(R). The procedure involves the partitioning of the set R into subhyperrectan- 
gles, each of which is associated with a node of the branch and bound tree. Let 
R’ C fi be such a partition. Then, LP(Cl’) gives a lower bound for the node 
subproblem PP(fi’). In particular, if (X, 2) solves LP(n’) and satisfies (3) for all 
JE UQJ tEr,{ J,,} , then by Lemma 1, X solves PP(LR’), and being feasible to 
PP(n’), the value v[PP(fi’)] = y[LP(n’)] p rovides an upper bound for the 
problem PP(Cl). Hence, we have a candidate for possibly updating the incum- 
bent solution x* and its value V” for PP(Cn). In any case, if v[LP(R’)] 3 7’*, we can 
fathom the node associated with R’. Hence, at any stage k of the branch and 
bound algorithm, we have a set of non-fathomed or active nodes denoted as (k, t), 
for t belonging to some index set Tk , each associated with a correspond- 
ing partition a’-’ of !A W e now select an active node (k, t*), t” E 
argmin{ v[LP(Q”~‘)], t E Tk}, and proceed by decomposing the corresponding flkSr 
into .two subhyperrectangles, based on a branching variable xp selected according 
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to the following rule. (Here, (2, X) denotes the optimal solution obtained for 
LP(W) .) 

BRANCHING RULE: 

p E argmax {ej} , 
jEN 

where 6J = m;xim8um ma~~~urn{ ]X~,Uj) - XjXJ]} for each j E N . (11) 
IJT=t 

A formal statement of this procedure is given below. 
Step 0: Initializations Initialize the incumbent solution x* = 0, and let the 

incumbent objective value V* = 03. Set k = 1 and Tk = (1). Denoting Q’,’ = Ln, 
solve LP(Rl’l) to obtain an optimal solution (X, X) = (a?, X1,l), and hence 
determine a branching variable xp by using (11). If ep = 0, then stop; by Lemma 
1, xi,i solves the original problem PP(fi). Otherwise, set t* = 1, and proceed to 
Step 1. 

Step 1: Partitioning Step (stage k, k 3 1). Having the active node (k, t*) to be 
partitioned, let xp be its associated branching variable determined via (11). Since 
t’$ > 0, by Lemma 3, 1:” < xkp”* < z$‘* , where (I:‘” , u:‘*) are the bounds on xp 
in the hyperrectangle Lnk,t*. Accordingly, partition the set fik,t* into two sub- 
hyperrectangles 

fpJ1 = fp* n {x : $f” $ xp < g,“} 
fpz = fp* f-j ix: xkp’f” c xp < &y } (12) 

by picking indices t,, t, @ Tk . After setting Tk = (T, - {t}) U {t, , tz} , proceed to 
Step 2. 

Step 2: Bounding Step. Solve the linear program LP(a”,‘l) to obtain an optimal 
solution (X, X) = (xk,ll, Xk*rl) of objective value LB,,,1 = v[LP(fi”,‘l)]. Using this 
optimal solution in (ll), determine the corresponding branching variable xp . If 
13, = 0, then xk,‘l solves the node subproblem PP(&“‘). In this case if V* > 
v[LP(fi”,‘l)], then update the incumbent solution x* = xk,‘l, and V* = LBk,,l. Else, 
t$ > 0, and so store the branching variable index p to be possibly used later. 
Repeat Step 2 after replacing t, by t,, and then proceed to Step 3. 

Step 3: Fathoming Step. Fathom any nonimproving nodes by setting Tkil = 
T, - {t E Tk : LB,,, 3 v*}. If Tk+l = 0, then stop. Otherwise, update fik+iZr = 
ak’t, (xk+lsr, Xk+lat) = (xkat, Xklt), and LBk+l,r = LBk,t for all t E Tk+l. Increment 
k by 1, and proceed to Step 4. 

Step 4: Node Selection Step. Select an active node (k, t*), where t* E 
argmin{LB,,, , t E Tk} , associated with the least lower bound LB, = LB,,,, over 
the active nodes at stage k. Return to Step 1. 

THEOREM 1 (Convergence Result). The above aZgorithm either terminates 
finitely with the incumbent solution being optimal to PP(IR), or else an infinite 
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sequence of stages is generated such that along any infinite branch of the branch 
and bound tree, any accumulation point of the x-variable sequence of the linear 
programming iterates generated at the nodes solves PP(fi). 

Proof. The case of finite termination is clear. Hence, suppose that an infinite 
sequence of stages is generated. Consider any infinite branch of the branch and 
bound tree, and denote the associated nested sequence of partitions as {O’,t(k)}, 
t(k) E T, for each k E K, where the indices (k, t(k)) used to represent the nodes 
are selected so that 

LB, = LBk,t(kI = v[LP(@““‘)] Vk E K . (13) 

By taking any convergent subsequence of {x~,~@) }, if necessary, assume without 
loss of generality that 

k,t(k) {x }K+X. (14) 

We must show that X solves PP(LR). First of all, note that since t(k) corresponds to 
the particular t” E Tk , for each k E K, and since LB,,,, is the least lower bound at 
stage k, we have, 

v[PP(Q)] 2 LBk,t(k) = &(x~,~(~), Xk,t(k)) Vk E K , (15) 

where &(x, X) is the objective function of LP(R). 
Next, observe that over the infinite sequence of nodes flkSc(k), k E K, there 

exists a variable xp that is branched on infinitely often via the choice (11). 
Associated with xp , there must be some index set .I, c N, 1 s ].I,] G 6 - 1, which 
occurs along with p infinitely often in determining I!?~. Let K, c K be the 
subsequence over which maxiEN q. = 0, = IXJm,,, - ipXJml in (11). Then, by (ll), 
for each k E K, , we have 

~xkV& _ X~Wx;;W ) > IX:;$;,’ - -$f(k)x;.@) 1 

VJ~N,]JJ=l,..., 6-1, j=l,..., n. (16) 

Now, by the boundedness of all sequences generated, there exists a subsequence 
K2 c K, , such that 

+kW, XkW, f+(k), uWk)~K,j (2, 2, I, 2) , (17) 

so that {Ok*‘@)} K2 + 6. Hence (X, X) is feasible to LP(fi). Moreover, by virtue of 
the partitioning (12), we know that for each k E K, , ~$~(~)g(li”~(~‘), ~kp”‘(~‘)) for 
all k’ E K2, k’ > k, while Xp E [c , U,]. Hence, we must have 2, = ip or Xp = L$, . 
By Lemma 3, we get 

xwJP) a =x& . (18) 

But this means from (16) that as k-t co, k E K2, we have 

XcJui)=xjXJ VJcN, (.I!=1 ,..., S-l, andj=l,..., n. (19) 
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Hence, the definitions (3) hold true for (X, x). Therefore, X is feasible to PP(fi), 
and moreover, 

- 
&0(-q = 4,(% x> a ~[pp(~>l . (20) 

Noting that (15) implies upon taking limits as k+ w, k E K, , that v[PP(sZ)] 2 
4,(X, x), we deduce that v[PP(n)] = &o(X), and so X is optimal to PP(Q). This 
completes the proof. El 

REMARK 2. Special Cases. Note that in the spirit of the foregoing algorithmic 
scheme, we can retain the flexibility of exploiting certain inherent special struc- 
tures in designing admissible, convergent variants of this procedure. For example, 
consider a trilinear programming problem (see Zikan (1990) for an application in 
the context of tracking trajectories) in which 6 = 3, with any third order cross 
product terms being of the type xixjx, for 1~ is n,, rzl + 1~ jS az, and 
n2 + 1 s k G IZ, and similarly, any second order cross product term being of the 
form xixj for i and j lying in two different index sets { 1, . . . , nl}, {n, + 
l,..., y1*}, and {n, + 1,. . . , n}. For this problem, we would need to generate in 
(2) only those bound factor products of order 3 that involve one variable from 
each index set. Then, Lemma 1 holds as stated, and in Lemma 2, the correspond- 
ing second order bound factor product constraints generated by indices from two 
different sets are also implied. Consequently, Lemma 3 holds with (J U p) having 
at most one index per index set. Accordingly, in (ll), we only need to consider 
those (J U j) which have at most one index from each index set, and the 
convergence of the resulting algorithm continues to hold by Theorem 1. 

REMARK 3. Alternate Branching Variable Selection Rule. In light of Lemma 1 
and the proof of Theorem 1, observe that we could have restricted in (11) the 
evaluation of only those \&,j) - X,x,] quantities for which the product 
‘iE(JUj) xi appears in some term, or as a subset of some term, in the problem.. 
Then, by the argument evolving around (16) in the proof of Theorem 1 and 
Lemma 1, the convergence of the algorithm would continue to hold. 

4. An Illustrative Example 

To illustrate the branch and bound algorithm of the previous section, we will 
solve the following nonconvex polynomial program of order S = 3. 

PP(R): Minimize 4”,(x) = x1x2x3 + xf - 2x,x, - 3x,x, + 5x,x, 

- xi + 5x, + x3 
subject to 4x, + 3x, + x, G 20 

x1 + 2x, + x3 2 1 

2~xt~5, Oax,<lO, 4GX,G8. 

(21) 
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At stage k=l, T,=(l), ~*=a, and 01’1=0={~:2~x,~5, 06~~~10, 
4 s x, G 8). The corresponding linear program LP(LR) has 56 constraints of type 
(2), linearized by using the substitution (3): Two of these constraints are given 
below as an example. 

(i> J1 = {I,% 3}, J* = 8: [(Xl - 2)(x,)(x, - 4)], 3 0 
-+ Xl,, - 4X,, - 2X,, + 8x, a 0 , 

(ii) J, = {1,3}, J* = (2) : [(x, -2)(x3 - 4)(10 - X,)ll 3 0 

+ x123 - 4X,, - 10X,, - 2X,, + 40x, + 8x, + 20x, G 80. 

Besides the newly generated constraints, LP(fi”l) contains the original functional 
constraints of PP(Cn) linearized via (3), along with 0l.l itself, in its constraint set, 
and has the objective function 

4,(x, X) = x1,, + Xl1 - 2x,, - 3x,, + 5x,, - x3, + 5x, + x3 . 

Note that the entire set of variables (x, X) in the problem is given by 

(x, X) = (Xl, 33 > x3, x11 ) x12 ) x13 ) x*2 7 x23 T x33 3 
x 111 ) x112 > x113 > x122 > x123 ) x133 > x22, 9 x223 3 x23, 3 X333) . 

Upon solving LP(Q”l), we obtain, 

(P, Xl”) = (3, 0, 8, 8,0,24, 0, 0, 64, 20, 0, 64,0, 0, 192, 0, 0, 0, 512) 
YILP(CI1”)] = -120. 

Note that since the constraints of (21) are linear, X is feasible to (21), so that 
+,(x’~‘) = -119 is an upper bound on the optimum to (21). Hence, the current 
incumbent solution is x” = (3,0,8) and v * = -119. Using (ll), we have, 0, = 
IX:;\ - x:‘~X~;‘) = 8, and 0, = 13, = 0. (If we use Remark 3 given at the end of the 
previous section, then 8, = IX:;’ - x:%‘x:~‘/ = 1). With x1 as the branching variable 
( p = l), we partition a’,’ as, 

~1~‘={x:2~x~~3,0~xx?~10,4~x~~8} 

~1~3={x:3~~x1~5,0~~x2~lo,4~xx3~s}, 

and set T, = {2,3} at Step 1. Then at Step 2, for node (1,2), LP(Rla2) gives 

p2, Xlx2) = (3, 0, 8, 9, 0,24, 0, 0, 64, 27, 0, 72, 0, 0, 192, 0, 0, 0, 512) , 
V[LP(f11’2)] = - 119 , 

and for node (1,3), LP(RlZ3) gives the same solution as for LP(CIlZ2). By using 
this common solution in (ll), we get 0, = 0, = 0, = 0. Hence, this solution is 
feasible to PP(fi), but it does not improve the incumbent value. At the fathoming 
step (Step 3), we fathom the nodes (1,2) and (1,3), and since the list of active 
nodes is now empty, the solution x* = (3,O,S) solves the given problem (21). 

Finally, let us illustrate the comment given in Remark 1. Suppose that in 
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addition to the bound factor constraints generated above, we also generate the 
following constraints: 

[(ui - xi)(uj - xj)(20 - 4x, - 3x, - x3)][ 3 0 for 1 s i d j < 3 . 

Note that this is a particular restricted set of additional constraints generated in 
the spirit of Remark 1. Then, it so happens that the augmented linear program 
LP(fi’,‘) itself yields the optimal solution to (21), with no branching required in 
this instance. 

5. Conclusions and Further Considerations 

In this paper we have presented a generic algorithm for globally optimizing 
polynomial programming problems based on the use of linear programming 
relaxations generated via a Reformation Linearization Technique. By incorporat- 
ing appropriate bound factor products in this RLT scheme, and employing a 
suitable partitioning technique that is prompted by the discrepancy between the 
new variables and the products they represent, a convergent branch and bound 
algorithm has been developed. 

As suggested in Remark 1, and evidenced by the foregoing illustrative example, 
there is a considerable flexibility, and therefore opportunity, in designing a 
favorable RLT process for this problem. Several types of implied constraints, or 
subsets, or surrogates thereof can be generated and added in a linearized form to 
LP(fi), thereby tightening its representation at the expense of an increase in size. 
This poses an obvious question of compromise that needs to be resolved. In the 
very least, a successive quadratic substitution can be used as in Shor (1990) to 
convert the problem into an equivalent quadratically constrained quadratic prob- 
lem, and then a pairwise bound factor product RLT can be employed to generate 
an admissible variant of our algorithm. The issue as to how this might compare 
with more elaborate variants is open to investigation. Moreover, as pointed out in 
Remark 3, different admissible branching variable selection schemes exist that 
need to be computationally evaluated. Also, as evident from Remark 2, special 
classes of polynomial programming problems might possess particular structures 
that can be exploited in designing special variants of the proposed algorithm. Our 
motivation here has been to present the basic machinery and methodology. 
Further investigation and experimentation is necessary to glean an adequate 
understanding of how best to implement this approach, depending on the actual 
type of problem being solved. Such issues will be pursued in a forthcoming paper. 
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