
A Global Optimization Algorithm for Polynomial
Programming Problems Using a
Reformulation-Linearization Technique

HANIF D. SHERALI and CIHAN H. TUNCBILEK
Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State
University Blacksburg, Virginia 24061-0118, U.S.A.

(Received: 5 July 1991; accepted: 8 October 1991)

Abstract. This paper is concerned with the development of an algorithm to solve continuous
polynomial programming problems for which the objective function and the constraints are specified
polynomials. A linear programming relaxation is derived for the problem based on a Reformulation
Linearization Technique (RLT), which generates nonlinear (polynomial) implied constraints to be
included in the original problem, and subsequently linearizes the resulting problem by defining new
variables, one for each distinct polynomial term. This construct is then used to obtain lower bounds in
the context of a proposed branch and bound scheme, which is proven to converge to a global optimal
solution. A numerical example is presented to illustrate the proposed algorithm.

Key words. Reformulation, linearization, polynomial programs, multilinear programs.

1. Introduction

In this paper, we address a polynomial programming problem which seeks a global
minimum to a polynomial objective function subject to a set of polynomial
constraint functions, all defined in terms of some continuous decision variables.
We do not put any other convexity or generalized convexity restrictions on these
functions, but we do assume that the feasible region is compact. A mathematical
formulation of this problem is given below.

PP(!Cl) : Minimize{+,(x): x E Z fl a} ,

where Z={x: +,(x)2& for r=l,.. .,R1, $?(x)=p, for r=R,+l,... ,R},
andR={x:OaZj~xj~uj<m, forj-l,...,n}, andwhere

c#&)~~~ arf[n xj] forr=O,l,...,R. (1)
I iEJ,,

Here, T, is an index set for the terms defining 4,(a), and (Y,~ are real coefficients
for the polynomial terms (IIIiEJ,, x,), t E T,, r = 0, 1, . . . , R. Note that we permit
a repetition of indices within each set J,,. For example, if J,(= { 1,2,2,3}, then
the corresponding polynomial term is x,x:x,. In particular, let us denote N =
(1,. . . , n}, and let 6 be the maximum degree of any polynomial term appearing
in PP(CL). Define & = {N, . . . , N} to be composed of 6 replicates of N. Then,
eachJ,,CN, with 16\J,,I~6, for tET,, t-=0,1,. . . , R.

Journal of Global Optimization 2: 101-112, 1992.
0 1992 Kluwer Academic Publishers. Printed in the Netherlands.

102 HANIF D. SHERALI AND CIHAN H. TUNCBILEK

In its general form as formulated above, polynomial programs have not
received much attention. Notable exceptions are the recent papers by Floudas and
Visweswaran (1991) and Shor (1990). The first of these papers suggests a
successive quadratic variable substitution strategy to transform a given polynomial
problem to one of minimizing a bilinear function subject to bilinear constraints.
Following this, a generalized Benders type of approach is employed, where the
Benders cuts are replaced by suitable implied linearized Lagrange functions. A
branch and bound algorithm is developed to obtain an &-optimal solution. The
second paper adopts similar successive quadratic transformations to write the
problem as an equivalent quadratically constrained quadratic problem. In some
problem instances, products of linear constraints, if present, are selectively used
to generate additional implied quadratic constraints. However, rather than solve
such problems in general, the focus here is to develop sufficient conditions under
which the Lagrangian dual of the resulting equivalent quadratic problem would
preclude the presence of a duality gap.

In contrast, a substantial amount of literature exists on some special cases of
Problem PP(ln), such as concave minimization problems and bilinear program-
ming problems (see Pardalos and Rosen (1987) for a recent survey). Another
related problem to PP(in) is the O-l polynomial program, where the x-variables
are restricted to be binary valued. Various linearization, algebraic, enumerative,
and cutting plane methods have been developed for nonlinear O-l programs, as
recently surveyed by Hansen, Jaumard, and Mathon (1989). In particular, for
constrained polynomial O-l programming problems, the linearization-cutting
plane method proposed by Balas and Mazzola (1984a, b) appears to perform
quite favorably (see Hansen et al., 1989). However, this approach exploits the O-l
structure of the problem, and is therefore not directly applicable for continuous
polynomial programming problems.

Problem PP(fi) belongs to the general class of constrained global optimization
problems, for which Horst (1990), and Horst and Tuy (1990) prescribe a variety
of promising methods. These methods include branch and bound, outer approxi-
mation, and combinations of branch and bound and outer approximation tech-
niques. In an earlier paper, Horst (1986) also presents a prototype branch and
bound algorithm to solve constrained global optimization problems, and gives
various sufficient conditions for convergence.

To solve PP(Ln), we propose a branch and bound algorithm which utilizes
specially constructed linear bounding problems using a Reformulation Lineariza-
tion Technique (RLT). In this approach, we generate nonlinear implied con-
straints by taking the products of bounding terms in fi up to a suitable order, and
also possibly products of other defining constraints of the problem. The resulting
problem is subsequently linearized by defining new variables, one for each
nonlinear term appearing in the problem. The straightforward mechanics of RLT
automatically creates outer linearizations that approximate the closure of the
convex hull of the feasible region. In the case of polynomial O-l integer programs

POLYNOMIAL PROGRAMMING PROBLEMS 103

and polynomial O-l mixed integer programs which are linear in the continuous
variables when the O-l variables are fixed in values, Sherali and,Adams (1989,
1990) obtain a hierarchy of such approximations leading to the exact convex hull
representation of the feasible region, by using suitable applications of such an
RLT procedure. For the jointly constrained biconvex programming problem,
which is a special case of PP(fi), Al-Khayyal and Falk (1983)) and Al-Khayyal
(1990) constructed linear bounding problems with the motivation to approximate
the convex envelopes of the biconvex functions appearing in the constraints and in
the objective function. By selecting proper products of lower/upper bounding
constraints, their linear programming representation can equivalently be obtained
via a restricted application of RLT. Sherali and Alameddine (1990) applied an
extended version of RLT to derive stronger bounds in a branch and bound
algorithm to solve bilinear programming problems. They also showed that for
some special cases of jointly constrained bivariate bilinear programs, RLT yields
the exact convex hull representation. In this paper, we generalize their branch
and bound algorithm for solving continuous polynomial programs. A similar
partitioning strategy is employed, involving the splitting of the set R into smaller
hyperrectangles at each stage of the algorithm. However, the main point of
difference lies in the construction of an appropriate RLT procedure used in
concert with a suitable partitioning of the hyperrectangle in order to ensure the
convergence of the algorithm.

The remainder of this paper is organized as follows. In the next section, we
construct the RLT based linear bounding problem. Section 3 imbeds this problem
in a branch and bound algorithm, and prescribes a partitioning strategy that
guarantees the convergence of the overall algorithm. A third order polynomial
problem is solved to illustrate the procedure in Section 4, and the final section
discusses further ongoing research and implementation issues.

2. An RLT Based Linear Bounding Problem

Given 0, in order to construct the linear programming bounding problem LP(R)
using RLT, we begin by generating implied constraints using distinct products of
bounding factors (xi - lj) 2 0, (u, - xi) 2 0, j E N, taken 6 at a time. These
constraints are of the form

where (I1 U J,) 5 i?, 11, U J21 = 6. The number of distinct constraints of type (2)
is given by

n+/C-1
i (k
k=O

)(n+;;I;;-l).

After including the constraints (2) in the problem PP(fi), let us substitute

104 HANIF D. SHERALI AND CIHAN H. TUNCBILEK

where the indices in J are assumed to be sequenced in nondecreasing order, and
where Xii1 = x,Vj E N, and X, = 1. The number of X-variables defined here,
besides XCjj , j E N,, and X, is (n i”) - (n + 1). Note that each distinct set J
produces one distinct X, variable, and that when we write XCi,j,k) or XCJ,UJ,) for
example, we assume that the indices within (.) are sequenced in nondecreasing
order.

REMARK 1. Tighter Linear Programming Representations. Evidently, the con-
straints of type (2) are implied by the set Cl prior to the linearization. However,
following the linearization process, these constraints impose useful interrelation-
ships among the product variables X,. In a likewise manner, we can also generate
additional implied constraints in the form of polynomials of degree less than or
equal to 6, by taking suitable products of constraint factors 4,(x) - p, b 0,
r = 1, . . . , R, and/or products of bounding factors with constraint factors wher-
ever possible. In addition, we can multiply the equality constraints 4,(x) = /?, ,
r=R1+l,..., R, defining 2, by sets of products of variables of the type
Ilj,,, xi, J, c N, so long as the resulting polynomial expression is of degree no
more than 6. Incorporating these additional constraints in LP(fl) after making the
substitutions (3), produces a tighter linear programming representation. Although
this is theoretically admissible and may be computationally advantageous, it is not
necessarily required for the results presented in this paper. Nevertheless, we
permit the inclusion of such constraints within LP(LR) as a user or application
driven option.

Lemma 1 below verifies that LP(sZ) is indeed a relaxation of PP(Q), and gives an
important characterization of LP((n). Henceforth, we will let v[*] denote the value
at optimality of the corresponding problem [*I.

LEMMA 1. v[LP(O)] G y[PP(fl)]. M oreover, if the optimal solution (x*, X*)
obtained for LP(0) satisfies (3) for all J E U ,“=, U fET,{Jrt}, then x” solves
Problem PP(fi).

Proof. For any feasible solution X to PP(Cl), there exists a feasible solution
(X, X) to LP(R) with th e same objective function value which is constructed using
the definition (3). Hence, v[LP(LR)] s v[PP(fi)]. Moreover, if (3) holds for an
optimal solution (CC*, X*) to LP(fi), for all JE U rZO U ftT,{Jrl}, then x* is
feasible to PP(O), and v[LP(LR)] = C,,, CY~~X:~, = C,,,O (Y,,~[I~~~~~~ n;], which
equals the objective value of PP(0) at x = x”. Hence, x” solves PP(R). 0

Notice that LP(LR) does not explicitly contain any constraint that can be generated
by constructing products of bounding factors taken less than 6 at a time. The next

POLYNOMIAL PROGRAMMING PROBLEMS 105

Lemma shows that such constraints are actually implied by those already existing
in LP(Q).

LEMMA 2. Let [f(e)], denote the linearized version of a polynomial function f(-)
after making the substitutions (3). Then, the constraints [F,,(J,, J,)], a 0, where
(J1 u J,) c N, IJ1 u J*) = S’, 1 =Z S ’ < 6, are all implied by the constraints

MJI 7 JA 3 0 generated via (2), f or all distinct ordered pairs (J1 U J2) c #,
IJ, u J,l = 6.

Proof. For any 6 ‘, 16 6 ’ < 6, consider the surrogate of the constraints
[F,,+,(J, U {t>, J2)ll 20 and [F,.+,(J,, J, U {t>>ll 2% where (J1 U 4) C N, IJ, U
J2)=6’, and tEN.

= tx,FadJ, a JZ)l! - h[F*,(J, 1 Jdl! + dF64JI > Jdl, - Lv.,4fI > Jdl, = (u, - k)[~,,(J,~ Jdl, 20
Since (uf - Z,)aO, it follows that [F,,(J,, J,)],*O is implied by [F,,+,(J, U
{t}, J,)], 2 0 and [F,,+,(J, , J, U {t})], 2 0. The required result follows by the
principle of induction, and this completes the proof. 0

The next result establishes an important interrelationship between the newly
defined variables X, , and prompts a partitioning strategy which drives the
convergence argument.

LEMMA 3. Let (X, 2) be a feasible solution to LP(R). Suppose that ,?p = 1, .
Then

-
xc,,,,=l&VJcN, 1+1G6-1. (4)

Similarly, if X, = u, , then

GUP) =u,X,VJ~N, 1+(%+-l. (5)

Proof. First, consider the case X, = Z, . For IJ~= 1, consider any q E N (pos-
sibly, q = p). By Lemma 2, the following constraints are implied by [(2)], , where
as before, [.I[denotes the linearization of [.I under the substitution (3).

Hence, we get

WP - 1,) + zpxq c x(p,4) =z $x4 + uq(xp - I,) . (7)

By evaluating (7) at (X, X), we have XCp,yj = lpX4.
Now, let us inductively assume that (4) is true for IJI = 1, . . . , (t - l), and

consider IJI = t, where 2 St<S-l.ForanyqEJ(possiblyq-p),byLemma2,
the following constraints are implied by [(2)],.

106 HANIF D. SHERALI AND CIHAN H. TUNCBILEK

[(xpAlp)(xq-'q) fl (X,-'j)],Lo
jEJ-q

[(~p-zp)(uqpxq) I2 (I-,-1,)] >O.
jEJ-q 1

(8)

Let us write lljIjEJeq(xj - 1,) = Il,,,-, , x. + f(x), where f(x) is a polynomial in x of
degree no more than t - 2. Then, from (8), we have

(%JP) - QJJ> 2 lqw(J+p-q) - p$bq)) + Ppx,f(x) - xpx,f(41,
+ 1, lx, f(x) - 1, f(x)ll

(XV UP) - l,X,) s uq (x(J+p-q) - $X(,-q,) + [~pxqf(x) - x,-qb)l, (9)

+ u,[x,.w - qG91, .

Let (*)lCi.xj denote the function (.) being evaluated at (i, 2). By the induction
hypothesis, &+p-qj = I&q,, b+JWl~l~x,~~ = ~pbqf(4111~x.~.)~ and
[x,f(x)l,~(x.x~ = $M41&,,,. H ence, when we evaluate (9) at (X, x), the right
hand sides of both the inequalities become zero, and this gives XC,+) = Z,gJ.

The case for X, = up can be similarly proven by using

[(%4(~,-x,, rI (nj-Lj)][zO
jtJ-q

in place of (S), and this completes the proof.

(10)

q

3. A Branch and Bound Algorithm

We are now ready to inbed LP(R) in a branch and bound algorithm to solve
PP(R). The procedure involves the partitioning of the set R into subhyperrectan-
gles, each of which is associated with a node of the branch and bound tree. Let
R’ C fi be such a partition. Then, LP(Cl’) gives a lower bound for the node
subproblem PP(fi’). In particular, if (X, 2) solves LP(n’) and satisfies (3) for all
JE UQJ tEr,{ J,,} , then by Lemma 1, X solves PP(LR’), and being feasible to
PP(n’), the value v[PP(fi’)] = y[LP(n’)] p rovides an upper bound for the
problem PP(Cl). Hence, we have a candidate for possibly updating the incum-
bent solution x* and its value V” for PP(Cn). In any case, if v[LP(R’)] 3 7’*, we can
fathom the node associated with R’. Hence, at any stage k of the branch and
bound algorithm, we have a set of non-fathomed or active nodes denoted as (k, t),
for t belonging to some index set Tk , each associated with a correspond-
ing partition a’-’ of !A W e now select an active node (k, t*), t” E
argmin{ v[LP(Q”~‘)], t E Tk}, and proceed by decomposing the corresponding flkSr
into .two subhyperrectangles, based on a branching variable xp selected according

POLYNOMIAL PROGRAMMING PROBLEMS 107

to the following rule. (Here, (2, X) denotes the optimal solution obtained for
LP(W) .)

BRANCHING RULE:

p E argmax {ej} ,
jEN

where 6J = m;xim8um ma~~~urn{]X~,Uj) - XjXJ]} for each j E N . (11)
IJT=t

A formal statement of this procedure is given below.
Step 0: Initializations Initialize the incumbent solution x* = 0, and let the

incumbent objective value V* = 03. Set k = 1 and Tk = (1). Denoting Q’,’ = Ln,
solve LP(Rl’l) to obtain an optimal solution (X, X) = (a?, X1,l), and hence
determine a branching variable xp by using (11). If ep = 0, then stop; by Lemma
1, xi,i solves the original problem PP(fi). Otherwise, set t* = 1, and proceed to
Step 1.

Step 1: Partitioning Step (stage k, k 3 1). Having the active node (k, t*) to be
partitioned, let xp be its associated branching variable determined via (11). Since
t’$ > 0, by Lemma 3, 1:” < xkp”* < z$‘* , where (I:‘” , u:‘*) are the bounds on xp
in the hyperrectangle Lnk,t*. Accordingly, partition the set fik,t* into two sub-
hyperrectangles

fpJ1 = fp* n {x : $f” $ xp < g,“}
fpz = fp* f-j ix: xkp’f” c xp < &y } (12)

by picking indices t,, t, @ Tk . After setting Tk = (T, - {t}) U {t, , tz} , proceed to
Step 2.

Step 2: Bounding Step. Solve the linear program LP(a”,‘l) to obtain an optimal
solution (X, X) = (xk,ll, Xk*rl) of objective value LB,,,1 = v[LP(fi”,‘l)]. Using this
optimal solution in (ll), determine the corresponding branching variable xp . If
13, = 0, then xk,‘l solves the node subproblem PP(&“‘). In this case if V* >
v[LP(fi”,‘l)], then update the incumbent solution x* = xk,‘l, and V* = LBk,,l. Else,
t$ > 0, and so store the branching variable index p to be possibly used later.
Repeat Step 2 after replacing t, by t,, and then proceed to Step 3.

Step 3: Fathoming Step. Fathom any nonimproving nodes by setting Tkil =
T, - {t E Tk : LB,,, 3 v*}. If Tk+l = 0, then stop. Otherwise, update fik+iZr =
ak’t, (xk+lsr, Xk+lat) = (xkat, Xklt), and LBk+l,r = LBk,t for all t E Tk+l. Increment
k by 1, and proceed to Step 4.

Step 4: Node Selection Step. Select an active node (k, t*), where t* E
argmin{LB,,, , t E Tk} , associated with the least lower bound LB, = LB,,,, over
the active nodes at stage k. Return to Step 1.

THEOREM 1 (Convergence Result). The above aZgorithm either terminates
finitely with the incumbent solution being optimal to PP(IR), or else an infinite

108 HANIF D. SHERALI AND CIHAN H. TUNCBILEK

sequence of stages is generated such that along any infinite branch of the branch
and bound tree, any accumulation point of the x-variable sequence of the linear
programming iterates generated at the nodes solves PP(fi).

Proof. The case of finite termination is clear. Hence, suppose that an infinite
sequence of stages is generated. Consider any infinite branch of the branch and
bound tree, and denote the associated nested sequence of partitions as {O’,t(k)},
t(k) E T, for each k E K, where the indices (k, t(k)) used to represent the nodes
are selected so that

LB, = LBk,t(kI = v[LP(@““‘)] Vk E K . (13)

By taking any convergent subsequence of {x~,~@) }, if necessary, assume without
loss of generality that

k,t(k) {x }K+X. (14)

We must show that X solves PP(LR). First of all, note that since t(k) corresponds to
the particular t” E Tk , for each k E K, and since LB,,,, is the least lower bound at
stage k, we have,

v[PP(Q)] 2 LBk,t(k) = &(x~,~(~), Xk,t(k)) Vk E K , (15)

where &(x, X) is the objective function of LP(R).
Next, observe that over the infinite sequence of nodes flkSc(k), k E K, there

exists a variable xp that is branched on infinitely often via the choice (11).
Associated with xp , there must be some index set .I, c N, 1 s].I,] G 6 - 1, which
occurs along with p infinitely often in determining I!?~. Let K, c K be the
subsequence over which maxiEN q. = 0, = IXJm,,, - ipXJml in (11). Then, by (ll),
for each k E K, , we have

~xkV& _ X~Wx;;W) > IX:;$;,’ - -$f(k)x;.@) 1

VJ~N,]JJ=l,..., 6-1, j=l,..., n. (16)

Now, by the boundedness of all sequences generated, there exists a subsequence
K2 c K, , such that

+kW, XkW, f+(k), uWk)~K,j (2, 2, I, 2) , (17)

so that {Ok*‘@)} K2 + 6. Hence (X, X) is feasible to LP(fi). Moreover, by virtue of
the partitioning (12), we know that for each k E K, , ~$~(~)g(li”~(~‘), ~kp”‘(~‘)) for
all k’ E K2, k’ > k, while Xp E [c , U,]. Hence, we must have 2, = ip or Xp = L$, .
By Lemma 3, we get

xwJP) a =x& . (18)

But this means from (16) that as k-t co, k E K2, we have

XcJui)=xjXJ VJcN, (.I!=1 ,..., S-l, andj=l,..., n. (19)

POLYNOMIAL PROGRAMMING PROBLEMS 109

Hence, the definitions (3) hold true for (X, x). Therefore, X is feasible to PP(fi),
and moreover,

-
&0(-q = 4,(% x> a ~[pp(~>l . (20)

Noting that (15) implies upon taking limits as k+ w, k E K, , that v[PP(sZ)] 2
4,(X, x), we deduce that v[PP(n)] = &o(X), and so X is optimal to PP(Q). This
completes the proof. El

REMARK 2. Special Cases. Note that in the spirit of the foregoing algorithmic
scheme, we can retain the flexibility of exploiting certain inherent special struc-
tures in designing admissible, convergent variants of this procedure. For example,
consider a trilinear programming problem (see Zikan (1990) for an application in
the context of tracking trajectories) in which 6 = 3, with any third order cross
product terms being of the type xixjx, for 1~ is n,, rzl + 1~ jS az, and
n2 + 1 s k G IZ, and similarly, any second order cross product term being of the
form xixj for i and j lying in two different index sets { 1, . . . , nl}, {n, +
l,..., y1*}, and {n, + 1,. . . , n}. For this problem, we would need to generate in
(2) only those bound factor products of order 3 that involve one variable from
each index set. Then, Lemma 1 holds as stated, and in Lemma 2, the correspond-
ing second order bound factor product constraints generated by indices from two
different sets are also implied. Consequently, Lemma 3 holds with (J U p) having
at most one index per index set. Accordingly, in (ll), we only need to consider
those (J U j) which have at most one index from each index set, and the
convergence of the resulting algorithm continues to hold by Theorem 1.

REMARK 3. Alternate Branching Variable Selection Rule. In light of Lemma 1
and the proof of Theorem 1, observe that we could have restricted in (11) the
evaluation of only those \&,j) - X,x,] quantities for which the product
‘iE(JUj) xi appears in some term, or as a subset of some term, in the problem..
Then, by the argument evolving around (16) in the proof of Theorem 1 and
Lemma 1, the convergence of the algorithm would continue to hold.

4. An Illustrative Example

To illustrate the branch and bound algorithm of the previous section, we will
solve the following nonconvex polynomial program of order S = 3.

PP(R): Minimize 4”,(x) = x1x2x3 + xf - 2x,x, - 3x,x, + 5x,x,

- xi + 5x, + x3
subject to 4x, + 3x, + x, G 20

x1 + 2x, + x3 2 1

2~xt~5, Oax,<lO, 4GX,G8.

(21)

110 HANIF D. SHERALI AND CIHAN H. TUNCBILEK

At stage k=l, T,=(l), ~*=a, and 01’1=0={~:2~x,~5, 06~~~10,
4 s x, G 8). The corresponding linear program LP(LR) has 56 constraints of type
(2), linearized by using the substitution (3): Two of these constraints are given
below as an example.

(i> J1 = {I,% 3}, J* = 8: [(Xl - 2)(x,)(x, - 4)], 3 0
-+ Xl,, - 4X,, - 2X,, + 8x, a 0 ,

(ii) J, = {1,3}, J* = (2) : [(x, -2)(x3 - 4)(10 - X,)ll 3 0

+ x123 - 4X,, - 10X,, - 2X,, + 40x, + 8x, + 20x, G 80.

Besides the newly generated constraints, LP(fi”l) contains the original functional
constraints of PP(Cn) linearized via (3), along with 0l.l itself, in its constraint set,
and has the objective function

4,(x, X) = x1,, + Xl1 - 2x,, - 3x,, + 5x,, - x3, + 5x, + x3 .

Note that the entire set of variables (x, X) in the problem is given by

(x, X) = (Xl, 33 > x3, x11) x12) x13) x*2 7 x23 T x33 3
x 111) x112 > x113 > x122 > x123) x133 > x22, 9 x223 3 x23, 3 X333) .

Upon solving LP(Q”l), we obtain,

(P, Xl”) = (3, 0, 8, 8,0,24, 0, 0, 64, 20, 0, 64,0, 0, 192, 0, 0, 0, 512)
YILP(CI1”)] = -120.

Note that since the constraints of (21) are linear, X is feasible to (21), so that
+,(x’~‘) = -119 is an upper bound on the optimum to (21). Hence, the current
incumbent solution is x” = (3,0,8) and v * = -119. Using (ll), we have, 0, =
IX:;\ - x:‘~X~;‘) = 8, and 0, = 13, = 0. (If we use Remark 3 given at the end of the
previous section, then 8, = IX:;’ - x:%‘x:~‘/ = 1). With x1 as the branching variable
(p = l), we partition a’,’ as,

~1~‘={x:2~x~~3,0~xx?~10,4~x~~8}

~1~3={x:3~~x1~5,0~~x2~lo,4~xx3~s},

and set T, = {2,3} at Step 1. Then at Step 2, for node (1,2), LP(Rla2) gives

p2, Xlx2) = (3, 0, 8, 9, 0,24, 0, 0, 64, 27, 0, 72, 0, 0, 192, 0, 0, 0, 512) ,
V[LP(f11’2)] = - 119 ,

and for node (1,3), LP(RlZ3) gives the same solution as for LP(CIlZ2). By using
this common solution in (ll), we get 0, = 0, = 0, = 0. Hence, this solution is
feasible to PP(fi), but it does not improve the incumbent value. At the fathoming
step (Step 3), we fathom the nodes (1,2) and (1,3), and since the list of active
nodes is now empty, the solution x* = (3,O,S) solves the given problem (21).

Finally, let us illustrate the comment given in Remark 1. Suppose that in

POLYNOMIAL PROGRAMMING PROBLEMS 111

addition to the bound factor constraints generated above, we also generate the
following constraints:

[(ui - xi)(uj - xj)(20 - 4x, - 3x, - x3)][3 0 for 1 s i d j < 3 .

Note that this is a particular restricted set of additional constraints generated in
the spirit of Remark 1. Then, it so happens that the augmented linear program
LP(fi’,‘) itself yields the optimal solution to (21), with no branching required in
this instance.

5. Conclusions and Further Considerations

In this paper we have presented a generic algorithm for globally optimizing
polynomial programming problems based on the use of linear programming
relaxations generated via a Reformation Linearization Technique. By incorporat-
ing appropriate bound factor products in this RLT scheme, and employing a
suitable partitioning technique that is prompted by the discrepancy between the
new variables and the products they represent, a convergent branch and bound
algorithm has been developed.

As suggested in Remark 1, and evidenced by the foregoing illustrative example,
there is a considerable flexibility, and therefore opportunity, in designing a
favorable RLT process for this problem. Several types of implied constraints, or
subsets, or surrogates thereof can be generated and added in a linearized form to
LP(fi), thereby tightening its representation at the expense of an increase in size.
This poses an obvious question of compromise that needs to be resolved. In the
very least, a successive quadratic substitution can be used as in Shor (1990) to
convert the problem into an equivalent quadratically constrained quadratic prob-
lem, and then a pairwise bound factor product RLT can be employed to generate
an admissible variant of our algorithm. The issue as to how this might compare
with more elaborate variants is open to investigation. Moreover, as pointed out in
Remark 3, different admissible branching variable selection schemes exist that
need to be computationally evaluated. Also, as evident from Remark 2, special
classes of polynomial programming problems might possess particular structures
that can be exploited in designing special variants of the proposed algorithm. Our
motivation here has been to present the basic machinery and methodology.
Further investigation and experimentation is necessary to glean an adequate
understanding of how best to implement this approach, depending on the actual
type of problem being solved. Such issues will be pursued in a forthcoming paper.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. ECS-8807090, and the Air Force Office of Scientific Research
under Grant No. 2304/Bl. The Government has certain rights in this material.

112 HANIF D. SHERALI AND CIHAN H. TUNCBILEK

References

Al-Khayyal, F.A. and J.E. Falk (1983) Jointly Constrained Biconvex Programming, Math. of Oper.
Res. 8, 273-286.

Al-Khayyal, F.A. (1990), Generalized Bilinear Programming: Part I. Models, Applications and
Linear Programming Relaxation, Working Paper, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332.

Balas, E. and J.B. Mazzola (1984a), Nonlinear O-l Programming: I. Linearization Techniques, Math.
Progr. 30, 1-21.

Balas, E. and J.B. Mazzola (1984b), Nonlinear O-l Programming: II. Dominance Relations and
Algorithms, Math. Progr. 30, 22-45.

Floudas, C.A. and V Visweswaran (1991), A Primal-Relaxed Dual Global Optimization Approach,
Working Paper, Department of Chemical Engineering, Princeton University, Princeton, N.J.
08544-5263.

Hansen, P., B. Jaumard, and V Mathon (1989) Constrained Nonlinear O-l Programming, Working
paper, EUTCOR, Rutgers University, Rutgers, New Jersey.

Horst, R. (1986), A General Class of Branch-and-Bound Methods in Global Optimization with Some
New Approaches for Concave Minimization, JOTA 51, 271-291.

Horst, R. (1990), Deterministic Methods in Constrained Global Optimization: Some Recent Ad-
vances and New Fields of Application, Naval Research Logistics Quarterly 37, 433-471.

Horst, R. and H. Tuy (1990), Globnl Optimization: Deterministic Approaches, Springer-Verlag,
Berlin, Germany.

Pardalos, P.M. and J.B. Rosen (1987), Constrained Global Optimization: AZgorithms and Applica-
tions, Springer-Verlag, Berlin.

Sherali, H.D. and W.P. Adams (1990), A Hierarchy of Relaxations between the Continuous and
Convex Hull Representations for Zero-One Programming Problems, SIAM Journal on Discrete
Mathematics 3, 411-430.

Sherali, H.D. and W.P. Adams (1989), A Hierarchy of Relaxations and Convex Hull Characteriza-
tions for Mixed-Integer Zero-One Programming Problems, Working Paper, Department of Industri-
al Engineering and Operations Research, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061.

Sherali, H.D. and A.R. Alameddine (1990), A New Reformulation-Linearization Technique for the
Bilinear Programming and Related Problems, with Applications to Risk Management, Working
Paper, Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia 24061.

Shor, N.Z. (1990), Dual Estimates In Multiextremal Problems, Working Paper, Institute of Cyber-
netics, Academy of Sciences of the Ukrainian SSR, Kiev 252207, USSR. (Presented at the IIASA
Workshop on Global Optimization, Sopron, Hungary (1990)).

Zikan, K. (1990), Track Initialization and Multiple Object Tracking Problem, Working Paper,
Department of Operations Research, Stanford University, Stanford, California 94305.

